3.1135 \(\int \frac {1}{(a+b x^4)^{3/4}} \, dx\)

Optimal. Leaf size=61 \[ -\frac {\sqrt {b} x^3 \left (\frac {a}{b x^4}+1\right )^{3/4} F\left (\left .\frac {1}{2} \cot ^{-1}\left (\frac {\sqrt {b} x^2}{\sqrt {a}}\right )\right |2\right )}{\sqrt {a} \left (a+b x^4\right )^{3/4}} \]

[Out]

-(1+a/b/x^4)^(3/4)*x^3*(cos(1/2*arccot(x^2*b^(1/2)/a^(1/2)))^2)^(1/2)/cos(1/2*arccot(x^2*b^(1/2)/a^(1/2)))*Ell
ipticF(sin(1/2*arccot(x^2*b^(1/2)/a^(1/2))),2^(1/2))*b^(1/2)/(b*x^4+a)^(3/4)/a^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 61, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.364, Rules used = {237, 335, 275, 231} \[ -\frac {\sqrt {b} x^3 \left (\frac {a}{b x^4}+1\right )^{3/4} F\left (\left .\frac {1}{2} \cot ^{-1}\left (\frac {\sqrt {b} x^2}{\sqrt {a}}\right )\right |2\right )}{\sqrt {a} \left (a+b x^4\right )^{3/4}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*x^4)^(-3/4),x]

[Out]

-((Sqrt[b]*(1 + a/(b*x^4))^(3/4)*x^3*EllipticF[ArcCot[(Sqrt[b]*x^2)/Sqrt[a]]/2, 2])/(Sqrt[a]*(a + b*x^4)^(3/4)
))

Rule 231

Int[((a_) + (b_.)*(x_)^2)^(-3/4), x_Symbol] :> Simp[(2*EllipticF[(1*ArcTan[Rt[b/a, 2]*x])/2, 2])/(a^(3/4)*Rt[b
/a, 2]), x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b/a]

Rule 237

Int[((a_) + (b_.)*(x_)^4)^(-3/4), x_Symbol] :> Dist[(x^3*(1 + a/(b*x^4))^(3/4))/(a + b*x^4)^(3/4), Int[1/(x^3*
(1 + a/(b*x^4))^(3/4)), x], x] /; FreeQ[{a, b}, x]

Rule 275

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m + 1, n]}, Dist[1/k, Subst[Int[x^((m
 + 1)/k - 1)*(a + b*x^(n/k))^p, x], x, x^k], x] /; k != 1] /; FreeQ[{a, b, p}, x] && IGtQ[n, 0] && IntegerQ[m]

Rule 335

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Subst[Int[(a + b/x^n)^p/x^(m + 2), x], x, 1/x] /;
FreeQ[{a, b, p}, x] && ILtQ[n, 0] && IntegerQ[m]

Rubi steps

\begin {align*} \int \frac {1}{\left (a+b x^4\right )^{3/4}} \, dx &=\frac {\left (\left (1+\frac {a}{b x^4}\right )^{3/4} x^3\right ) \int \frac {1}{\left (1+\frac {a}{b x^4}\right )^{3/4} x^3} \, dx}{\left (a+b x^4\right )^{3/4}}\\ &=-\frac {\left (\left (1+\frac {a}{b x^4}\right )^{3/4} x^3\right ) \operatorname {Subst}\left (\int \frac {x}{\left (1+\frac {a x^4}{b}\right )^{3/4}} \, dx,x,\frac {1}{x}\right )}{\left (a+b x^4\right )^{3/4}}\\ &=-\frac {\left (\left (1+\frac {a}{b x^4}\right )^{3/4} x^3\right ) \operatorname {Subst}\left (\int \frac {1}{\left (1+\frac {a x^2}{b}\right )^{3/4}} \, dx,x,\frac {1}{x^2}\right )}{2 \left (a+b x^4\right )^{3/4}}\\ &=-\frac {\sqrt {b} \left (1+\frac {a}{b x^4}\right )^{3/4} x^3 F\left (\left .\frac {1}{2} \cot ^{-1}\left (\frac {\sqrt {b} x^2}{\sqrt {a}}\right )\right |2\right )}{\sqrt {a} \left (a+b x^4\right )^{3/4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.01, size = 46, normalized size = 0.75 \[ \frac {x \left (\frac {b x^4}{a}+1\right )^{3/4} \, _2F_1\left (\frac {1}{4},\frac {3}{4};\frac {5}{4};-\frac {b x^4}{a}\right )}{\left (a+b x^4\right )^{3/4}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x^4)^(-3/4),x]

[Out]

(x*(1 + (b*x^4)/a)^(3/4)*Hypergeometric2F1[1/4, 3/4, 5/4, -((b*x^4)/a)])/(a + b*x^4)^(3/4)

________________________________________________________________________________________

fricas [F]  time = 0.87, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {1}{{\left (b x^{4} + a\right )}^{\frac {3}{4}}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^4+a)^(3/4),x, algorithm="fricas")

[Out]

integral((b*x^4 + a)^(-3/4), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (b x^{4} + a\right )}^{\frac {3}{4}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^4+a)^(3/4),x, algorithm="giac")

[Out]

integrate((b*x^4 + a)^(-3/4), x)

________________________________________________________________________________________

maple [F]  time = 0.17, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (b \,x^{4}+a \right )^{\frac {3}{4}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(b*x^4+a)^(3/4),x)

[Out]

int(1/(b*x^4+a)^(3/4),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (b x^{4} + a\right )}^{\frac {3}{4}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^4+a)^(3/4),x, algorithm="maxima")

[Out]

integrate((b*x^4 + a)^(-3/4), x)

________________________________________________________________________________________

mupad [B]  time = 1.08, size = 37, normalized size = 0.61 \[ \frac {x\,{\left (\frac {b\,x^4}{a}+1\right )}^{3/4}\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{4},\frac {3}{4};\ \frac {5}{4};\ -\frac {b\,x^4}{a}\right )}{{\left (b\,x^4+a\right )}^{3/4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a + b*x^4)^(3/4),x)

[Out]

(x*((b*x^4)/a + 1)^(3/4)*hypergeom([1/4, 3/4], 5/4, -(b*x^4)/a))/(a + b*x^4)^(3/4)

________________________________________________________________________________________

sympy [C]  time = 0.91, size = 36, normalized size = 0.59 \[ \frac {x \Gamma \left (\frac {1}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{4}, \frac {3}{4} \\ \frac {5}{4} \end {matrix}\middle | {\frac {b x^{4} e^{i \pi }}{a}} \right )}}{4 a^{\frac {3}{4}} \Gamma \left (\frac {5}{4}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x**4+a)**(3/4),x)

[Out]

x*gamma(1/4)*hyper((1/4, 3/4), (5/4,), b*x**4*exp_polar(I*pi)/a)/(4*a**(3/4)*gamma(5/4))

________________________________________________________________________________________